
OpenRVDAS
An Open Source Framework for

Building Data Acquisition Systems

David Pablo Cohn
openrvdas.org

 Writer Reader Transform

oceandata.tools

RVTEC 2019

(A lot of this is going to be familiar to
folks who were at INMARTECH last year)

Why OpenRVDAS?

• Many ships each running homebrew derivatives
of legacy systems (dsLog, LDS and others)

• Massive duplication of effort to support

• Common, open source codebase would allow
pooling expertise and best practices

• MIT License allows unrestricted use/copying/
modification/distribution/sublicensing for
commercial/non-commercial purposes

An framework, not a system

(Systems change as requirements change; a good
framework lets you easily put together whatever

 system meets current requirements)

Read from serial port, prefix with timestamp
and instrument id, write to file

 Writer Reader Transform

Everyone’s needs are different now
Everyone’s needs will be different in 5 years

Solution: small set of Lego-like components that can be
easily “snapped together” to create what you need

Read from serial port, prefix with timestamp
and instrument id, write to file

 Writer Reader Transform

Requirements

• Python 3.6+

• Should run on all POSIX-compliant systems

• Yes, it will run on a Raspberry Pi Zero

• Installation scripts available for CentOS, RedHat,
Ubuntu (and kind of MacOS)

Outline

• Building loggers out of components

• Running and controlling loggers

• Displaying and manipulating data from loggers

• What needs to be done next

1. Read data from an instrument
• serial port
• network

2. (Optionally) transform it
• timestamp
• parse

3. Write it to storage
• file
• network
• database

Loggers - basic unit of data acquisition

 LogfileWriter

 SerialReader

 TimestampTransform

NetworkWriter

 PrefixTransform

Readers, Transforms and Writers

Transforms WritersReaders

 TimeoutWriter

DatabaseReader

 FileReader

 NetworkReader

 SerialReader

 AlertWriter

 DatabaseWriter

 NetworkWriter

 LogfileWriter

 FilterQCTransform

 ParseTransform

 SliceTransform

 TimestampTransform

 PrefixTransform

Simple API makes it easy to create your own as needs arise

Three easy ways to combine

In Code

Command
line

Config file

{"knud->net": {
 "name": "knud->net",
 "readers": {
 "class": "SerialReader",
 "kwargs": {"port": "/dev/ttys1",
 "baudrate": 9600
 }
 ...

 listener.py --serial port=/dev/ttys1 \
 --transform_timestamp \
 --transform_prefix knud \
 --write_logfile /var/logs/knud \
 --write_network :6221 \
 --write_database rvdas@openrvdas:test

reader = SerialReader(port='/dev/ttys1')
transform = TimestampTransform()
writer = LogfileWriter(filebase='/var/logs/knud')
while True:
 in_record = reader.read()
 out_record = transform.transform(in_record)
 writer.write(out_record)

Python code API

reader = SerialReader(port='/dev/ttys1')
transform = TimestampTransform()
writer = LogfileWriter(filebase='/var/logs/knud')
while True:
 in_record = reader.read()
 out_record = transform.transform(in_record)
 writer.write(out_record)

API makes it easy to combine existing Readers/
Writers/Transforms (or create your own as needed)

Listeners - a command line interface

 listener.py --serial port=/dev/ttys1 \
 --transform_timestamp \
 --transform_prefix knud \
 --write_logfile /var/log/knud \
 --write_network :6221 \
 --write_database rvdas@openrvdas:test

PrefixTransform

FileWriter

NetworkWriter

DatabaseWriter

SerialReader

Loggers from config files

 readers:
 - class: SerialReader
 kwargs: {baudrate: 9600, port: /dev/ttys1}
 transforms:
 - class: TimestampTransform
 - class PrefixTransform
 kwargs: {prefix: gyr1}
 writers:
 - class: LogfileWriter
 kwargs: {filebase: /var/tmp/log/gyr1}
 - class: NetworkWriter
 kwargs: {network: ':6224'}

 listener.py --config_file gyr1.yaml

Loggers from config files

 readers:
 - class: SerialReader
 kwargs: {baudrate: 9600, port: /dev/ttys1}
 transforms:
 - class: TimestampTransform
 - class PrefixTransform
 kwargs: {prefix: gyr1}
 writers:
 - class: LogfileWriter
 kwargs: {filebase: /var/tmp/log/gyr1}
 - class: NetworkWriter
 kwargs: {network: ':6224'}
 stderr_writers:
 - class: LogfileWriter
 kwargs: {filebase: /var/tmp/log/stderr}

 listener.py --config_file gyr1.yaml

Outline

• Building loggers out of components

• Running and controlling loggers

• Displaying and manipulating data from loggers

• What needs to be done next

Multiple loggers: the Logger Runner

 logger_runner.py --config sample_config.json

s330->net:
 name: s330->net
 readers: ...
 transforms: ...
 writers: ...
mwx1->net:
 name: mwx1->net
 readers: ...
 transforms: ...
 writers: ...
eng1->net:
 name: eng1->net
 readers: ...
 transforms: ...
 writers: ...
...

Cruise control: the Logger Manager

Frequently have set of common modes that a
collection of loggers should be in (e.g. "off",
"port", "underway")

Logger manager script allows users to
• Switch between modes
• Monitor, enable/disable individual loggers

Command line interface

openrvdas> server/logger_manager.py

command? load_configuration NBP1406_cruise.yaml
command? get_modes
Available Modes: off, monitor, log, log+db

command? set_active_mode underway
command? get_loggers
Loggers: PCOD, cwnc, gp02, gyr1, adcp, eng1, svp1,
twnc, mbdp, knud, grv1, mwx1, pco2, pguv, s330, tsg1,
rtmp, hdas, tsg2, seap, true_wind, subsample

command? get_logger_configs s330
Configs for s330: s330->off, s330->net, s330->file/net,
s330->file/net/db

command? set_active_logger_config s330 s330->off
command? quit

Control architecture –
a database approach

• writes desired state to database
• retrieves latest observed status

from database

data
base

Logger
Manager

LoggersLoggersloggers

user
interface

• reads desired state from database
• checks observed state from system
• starts/stops processes to reconcile

can be in-memory,
MySQL, or...

API allows creating interface to
your favorite database and/or

favorite front-end system

data
base

Logger
Manager

LoggersLoggersloggers

My Favorite
Front-End

Django-based web interface

Outline

• Building loggers out of components

• Running and controlling loggers

• Displaying and manipulating data from loggers

• What needs to be done next

Displaying and Manipulating Data

The Cached Data Server ("CDS")

• A simple but specialized pub-sub server
• communicates via websockets

• Loggers can write data to it  
 (via CachedDataWriter)

• Loggers can read data from it  
 (via CachedDataReader)

Using the CDS for derived values

Read inputs from server, compute values,
inject outputs back into server

Relative Wind - Port/Stbd

True Wind - Port/Stbd

DerivedDataTransformCachedDataReader CachedDataWriter

Using the CDS for quality control

readers:
- class: CachedDataReader
 kwargs:
 data_server: localhost:8766
 subscription:
 fields:
 TWNCTension: {seconds: 0}
 TWNCPayout: {seconds: 0}
transforms:
- class: QCFilterTransform
 kwargs:
 bounds: TWNCTension:-150:10000,TWNCPayout:-60:175000
writers:
- class: AlertWriter
- class: LogfileWriter
 kwargs:
 filebase: /var/log/openrvdas/winch_errors

Using the CDS for quality control

- class: TimeoutWriter
 kwargs:
 timeout: 60
 message: No Gyro data received for 60 seconds
 resume_message: Gyro data has resumed
 writer:
 - class: LogfileWriter
 kwargs:
 filebase: /var/log/openrvdas/winch_errors

PrefixTransform

FileWriter

NetworkWriter

TimeoutWriter

SerialReader

Using the CDS for smoothing

- class: SubsampleTransform
 kwargs:
 field_spec:
 wind_mast_port_true_speed_knots:
 output: avg_wind_mast_port_true_speed_knots
 subsample:
 type: boxcar_average
 window: 60
 interval: 60
 wind_mast_stbd_true_speed_knots:
 output: avg_wind_mast_stbd_true_speed_knots
 subsample:
 type: boxcar_average
 window: 60
 interval: 60

Using the CDS for smoothing

Javascript-based display widgets

Display widgets

• Embed widgets on arbitrary
web page

• Widget Server code
aggregates all widget
subscriptions from a page,
open single websocket to CDS

• Simple API makes creation/
integration of new widget
types easy

TimelineWidget

WidgetServer

DialWidget
TextWidget

TextWidget

Cached Data
Server

<div id="line-container"></div>

<script type="text/javascript">
 var line_fields = {
 S330Pitch: {
 name: "Pitch",
 seconds: 30
 },
 S330Roll: {
 name: "Roll",
 seconds: 30
 }
 };
 var tl_widget = new TimelineWidget('line-container',
 line_fields, 'Degrees'));
 var widget_server = new WidgetServer([tl_widget],
 'localhost:8766');
 widget_server.serve();
</script>

Display widgets

Outline

• Building loggers out of components

• Running and controlling loggers

• Displaying and manipulating data from loggers

• What needs to be done next

OpenRVDAS issues, projects and milestones at
https://github.com/oceandatatools/openrvdas

for a complete list of where we're going

https://github.com/OceanDataTools/openrvdas

Better control UX

Still using the original, vaguely-appalling GUI

Open source display widgets

Timeline and Dial widgets are based on
Highcharts; offers a free license for academic
institutions, but still a proprietary solution.

Maybe a Scratch-like
visual interface?

FileReader NetworkReader

NetworkWriter

PrefixTransform

ParseTransform

Better ways to compose
Readers/Transforms/Writers

More flexible and efficient
dataflow-based listener

Dataflow-based Listener

 ParseNMEATransform

 QCTransform

 AlarmWriter LogfileWriter DatabaseWriter

 DerivedDataTransform

 PrefixTransform

 SerialReader NetworkReader

GUI-based display creation

(More) sea trials!

For more information

http://openrvdas.org

david.cohn@openrvdas.org
http://github.com/oceandatatools/openrvdas

Many thanks to

